A Rational Approximation to Weierstrass' \wp-Function

By Ulrich Eckhardt

Abstract

A rational approximation to Weierstrass' \wp-function in the equianharmonic case for unit period parallelogram is given. With a third-degree numerator polynomial and a fourth-degree denominator polynomial the maximal error for $|z|<1 / \sqrt{3}$ becomes $3 \cdot 10^{-14}$.

The approximation of $\wp(z)$ is then used to calculate a rational approximation to $\wp^{\prime}(z)$ together with an error bound.

Weierstrass'elliptic functions are frequently used in mathematical physics ([2], [6], [7], [8], [12], [13]). A very interesting new field of application is given in the theory of type-II superconductors [4] and of superfluid helium II [11]. In contrast to other special functions of mathematical physics, however, there are only very few approximations of these functions available. The classical way is to compute them by Laurent series or ϑ-series. Recently, Emersleben [5] gave approximations of generalized zeta functions and Southard [9], [10] published economized polynomial representations.

In this paper, a rational approximation to Weierstrass' \wp-function for the equianharmonic case is presented. This approximation was computed by a method for evaluating lattice sums in solid state physics. In [4], Weierstrass' zeta function was approximated in exactly the same manner.

In the equianharmonic case, the period lattice of Weierstrass' elliptic functions is given in the following way: With the complex numbers

$$
\begin{equation*}
r_{j}=e^{j \pi i / 3}, \quad j=0,1, \ldots \tag{1}
\end{equation*}
$$

the lattice points are defined by

$$
\begin{equation*}
w=w_{m n}=m r_{1}+n r_{5}, \quad m, n=0,1,2, \ldots \tag{2}
\end{equation*}
$$

In the more mathematical literature on Weierstrass' elliptic functions, the r_{j} are premultiplied by a factor $3.059908074 \ldots$ (see [10, 18.13.15]). In view of the physical applications we prefer to have $\left|r_{j}\right|=1$.

For any complex z, Weierstrass' \wp-function is defined as follows:

$$
\begin{equation*}
\wp(z)=\frac{1}{z^{2}}+\sum_{w \neq 0}\left[\frac{1}{(z-w)^{2}}-\frac{1}{w^{2}}\right] \tag{3}
\end{equation*}
$$

This double sum is unconditionally convergent. We prescribe a fixed succession of summation by renumbering the $w_{m n}$.

Let
(4)

$$
\begin{aligned}
& w=w_{n, k, j}=n r_{j}+k r_{j+2}, \\
& \\
& \quad n=1,2,3, \ldots, \quad k=1,2, \ldots, n, \quad j=0,1,2,3,4,5 .
\end{aligned}
$$

We denote

$$
\begin{equation*}
\sum_{n=\alpha}^{\beta}{ }^{(6)}=\sum_{n=\alpha}^{\beta} \sum_{k=1}^{n} \sum_{j=0}^{5} \tag{5}
\end{equation*}
$$

i.e. we are summing over concentric hexagonal shells. This results in the following simpler conditionally convergent series:

$$
\begin{equation*}
\wp(z)=\frac{1}{z^{2}}+\sum_{n=1}^{\infty}(6) \frac{1}{(z-w)^{2}} \tag{6}
\end{equation*}
$$

We split this series into three parts

$$
\begin{equation*}
\wp(z)=\frac{1}{z^{2}}+6 \cdot z^{4} \cdot \frac{5+z^{6}}{\left(1-z^{6}\right)^{2}} \tag{7a}
\end{equation*}
$$

$$
\begin{align*}
& +\sum_{n=2}^{N}(6) \frac{1}{(z-w)^{2}} \tag{7.b}\\
& +\sum_{n=N+1}^{\infty} \frac{1}{(z-w)^{2}} \tag{7.c}
\end{align*}
$$

(7.b) is a rational function:

$$
\begin{equation*}
\sum_{n=2}^{N}(6) \frac{1}{(z-w)^{2}}=6 \cdot z^{4} \cdot \widetilde{P}(z) / \widetilde{Q}(z) \tag{8}
\end{equation*}
$$

\widetilde{P} and \widetilde{Q} are polynomials whose coefficients can be calculated conveniently and safely (e.g. PL1-FORMAC rational arithmetic).

First, we examine (7.c).

$$
\begin{aligned}
\sum_{n=N+1}^{\infty}(6) & \frac{1}{(z-w)^{2}}=-\sum_{n=N+1}^{\infty} \frac{d}{d z} \frac{1}{z-w} \\
& =-\sum_{n=N+1}^{\infty} \sum_{k=1}^{n} \frac{d}{d z} \frac{6 z^{5}}{z^{6}-\left(n+k r_{2}\right)^{6}} \\
& =-\sum_{n=N+1}^{\infty} \frac{d}{d z}\left[\frac{6 z^{5}}{n^{6}} \cdot \frac{1}{\left(1+\frac{k}{n} r_{2}\right)^{6}} \cdot \sum_{\nu=0}^{\alpha-1} \frac{(z / n)^{6 \nu}}{\left(1+\frac{k}{n} r_{2}\right)^{6 \nu}}\right.
\end{aligned}
$$

$$
\left.+\frac{6 z^{5}}{n^{6}} \cdot \frac{(z / n)^{6 \alpha}}{\left(1+\frac{k}{n} r_{2}\right)^{6 \alpha}} \cdot \frac{1}{\left(1+\frac{k}{n} r_{2}\right)^{6}-(z / n)^{6}}\right]
$$

$$
=\sum_{\nu=0}^{\alpha-1}(36 \nu+30) z^{6 \nu+4} \sum_{n=N+1}^{\infty} \frac{1}{n^{6 \nu+5}} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left(1+\frac{k}{n} r_{2}\right)^{6 \nu+6}}+R_{N}^{(\alpha)}
$$

where

$$
\begin{align*}
& R_{N}^{(\alpha)}=\sum_{n=N+1}^{\infty} \sum_{k=1}^{n}\left[\frac{1}{n^{6 \alpha+6}} \frac{1}{\left(1+\frac{k}{n} r_{2}\right)^{6 \alpha}} \frac{(36 \alpha+30) z^{6 \alpha+4}}{\left(1+\frac{k}{n} r_{2}\right)^{6}-\left(\frac{z}{n}\right)^{6}}\right. \tag{10}\\
&\left.+\frac{1}{n^{6 \alpha+12}} \frac{1}{\left(1+\frac{k}{n} r_{2}\right)^{6 \alpha}} \frac{36 z^{6 \alpha+10}}{\left[\left(1+\frac{k}{n} r_{2}\right)^{6}-\left(\frac{z}{n}\right)^{6}\right]^{2}}\right]
\end{align*}
$$

For $k=1,2, \ldots, n$ is

$$
\begin{equation*}
\frac{\sqrt{3}}{2} \leqslant\left|1+\frac{k}{n} r_{2}\right| \leqslant 1 \tag{11}
\end{equation*}
$$

We confine ourselves to argument values z with

$$
\begin{equation*}
|z| \leqslant(N+1) / 2 \tag{12}
\end{equation*}
$$

and define

$$
\begin{equation*}
\sigma_{N}^{(k)}:=\sum_{n=N+1}^{\infty} \frac{1}{n^{k}}=\zeta_{0}(k)-\sum_{n=1}^{N} \frac{1}{n^{k}} \tag{13}
\end{equation*}
$$

$\zeta_{0}(k)$ being the Riemann zeta function. This gives the following estimate for $R_{N}^{(\alpha)}$:

$$
\begin{align*}
\left|R_{N}^{(\alpha)}\right| \leqslant & (36 \alpha+30)\left(\frac{64}{27}\right)^{\alpha} \frac{64}{26} \sigma_{N}^{(6 \alpha+5)}|z|^{6 \alpha+4} \tag{14}\\
& +36\left(\frac{64}{27}\right)^{\alpha} \frac{64^{2}}{26^{2}} \sigma_{N}^{(6 \alpha+11)}|z|^{6 \alpha+10}
\end{align*}
$$

In (9), the following sum appears:

$$
\begin{equation*}
S_{n}^{(\nu)}=\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left(1+\frac{k}{n} r_{2}\right)^{6 \nu}}=\frac{1}{n} \sum_{k=0}^{n} \frac{1}{\left(1+\frac{k}{n} r_{2}\right)^{6 \nu}} . \tag{15}
\end{equation*}
$$

The prime indicates the first and the last term of the sum being multiplied by a factor $1 / 2$. Denoting by

$$
\begin{equation*}
f_{\nu}(t)=\left(1+t \cdot r_{2}\right)^{-6 \nu} \tag{16}
\end{equation*}
$$

$S_{n}^{(\nu)}$ is exactly the trapezoid approximation for the integral

$$
\begin{equation*}
I_{\nu}=\int_{0}^{1} f_{\nu}(t) d t=-\frac{1}{6 v-1}, \quad \nu=1,2, \ldots \tag{17}
\end{equation*}
$$

$S_{n}^{(\nu)}$ can be expressed by I_{ν} by means of the Euler-Maclaurin formula [1, 23.1.30]. In order to do so we denote by $B_{2 m}$ the $2 m$ th Bernoulli number and

$$
\begin{equation*}
\Delta_{k}^{(\nu)}=f_{\nu}^{(2 k-1)}(1)-f_{\nu}^{(2 k-1)}(0), \quad k=1,2, \ldots \tag{18}
\end{equation*}
$$

Then

$$
\begin{align*}
S_{n}^{(\nu)}= & I_{\nu}+\sum_{k=1}^{m_{\nu}-1} \frac{B_{2 k}}{(2 k)!} \frac{1}{n^{2 k}} \Delta_{k}^{(\nu)} \tag{19}\\
& +\frac{B_{2 m_{\nu}}}{\left(2 m_{\nu}\right)!} \frac{1}{n^{2 m_{\nu}}} \frac{1}{n} \sum_{k=0}^{n-1} f_{\nu}^{\left(2 m_{\nu}\right)}\left((1+\theta) \frac{k}{n}\right), \quad 0<\theta<1
\end{align*}
$$

Abbreviating

$$
\begin{equation*}
c_{m}=\frac{B_{2 m}}{(2 m)!}, \quad \gamma_{m}^{(\nu)}=\max _{0 \leqslant t \leqslant 1}\left|f_{\nu}^{(2 m)}(t)\right|, \tag{20}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left|\frac{B_{2 m_{\nu}}}{\left(2 m_{\nu}\right)!} \frac{1}{n} \sum_{k=0}^{n-1} f_{\nu}^{\left(2 m_{\nu}\right)}\left((1+\theta) \frac{k}{n}\right)\right| \leqslant c_{m_{\nu}} \cdot \gamma_{m_{\nu}}^{(\nu)} \tag{21}
\end{equation*}
$$

(9), (13) and (19) yield

$$
\begin{align*}
\sum_{n=N+1}^{\infty} \frac{1}{(z-w)^{2}}= & \sum_{\nu=0}^{\alpha-1}(36 \nu+30) z^{6 \nu+4} \sum_{k=1}^{m_{\nu}^{-1}} \frac{B_{2 k}}{(2 k)!} \Delta_{k}^{(\nu+1)} \sigma_{N}^{(6 \nu+2 k+5)} \\
& -6 \sum_{\nu=0}^{\alpha-1} \sigma_{N}^{(6 \nu+5)} z^{6 \nu+4}+\rho_{N, m_{\nu}}^{(\alpha)} \tag{22}
\end{align*}
$$

The error $\rho_{N, m_{\nu}}^{(\alpha)}$ can be estimated by means of (14), (19) and (21) as follows:

$$
\begin{align*}
\left|\rho_{N, m}^{(\alpha)}\right| \leqslant & \sum_{\nu=0}^{\alpha-1}(36 \nu+30) c_{m_{\nu}} \gamma_{m}^{(\nu)} \sigma_{N}^{\left(6 \nu+2 m_{\nu}+5\right)}|z|^{6 \nu+4} \\
& +(36 \alpha+30)\left(\frac{64}{27}\right)^{\alpha} \frac{64}{26} \sigma_{N}^{(6 \alpha+5)}|z|^{6 \alpha+4} \tag{23}\\
& +36\left(\frac{64}{27}\right)^{\alpha} \frac{64^{2}}{26^{2}} \sigma_{N}^{(6 \alpha+11)}|z|^{6 \alpha+10}
\end{align*}
$$

For $\alpha=1$ we have in particular

$$
\begin{align*}
& \sum_{n=N+1}^{\infty} \frac{1}{(z-w)^{2}} \\
& =30 z^{4}\left[-0.2 \sigma_{N}^{(5)}-0.5 \sigma_{N}^{(7)}-\frac{14}{15} \sigma_{N}^{(9)}\right. \tag{24}\\
& \left.\quad-\sigma_{N}^{(11)}+3.3 \sigma_{N}^{(13)}+\frac{91}{3} \sigma_{N}^{(15)}+\frac{2764}{30} \sigma_{N}^{(17)}+\cdots\right]
\end{align*}
$$

$$
+\rho_{N, m}^{(1)}
$$

and

$$
\begin{aligned}
\left|\rho_{N, m}^{(1)}\right| \leqslant & 30 \cdot c_{m} \gamma_{m}^{(1)} \cdot \sigma_{N}^{(2 m+5)}|z|^{4} \\
& +66 \cdot \frac{64^{2}}{26 \cdot 27} \cdot \sigma_{N}^{(11)} \cdot|z|^{10}+36 \cdot \frac{64^{3}}{27 \cdot 26^{2}} \sigma_{N}^{(17)}|z|^{16} \\
\leqslant & 30 \cdot c_{m} \gamma_{m}^{(1)} \sigma_{N}^{(2 m+5)}|z|^{4}+385.095 \cdot \sigma_{n}^{(11)} \cdot|z|^{10} \\
& +517.050 \cdot \sigma_{N}^{(17)}|z|^{16} .
\end{aligned}
$$

Tables for $c_{m}, \gamma_{m}^{(1)}$ and $\sigma_{N}^{(k)}$ can be found in [4].
In order to calculate $\wp(z)$ efficiently by the approximation given here, one takes
advantage of the fact that this function is doubly periodic, i.e.

$$
\begin{equation*}
\wp\left(z+r_{j}\right)=\wp(z) \tag{26}
\end{equation*}
$$

Thus, it is sufficient to know $\wp(z)$ in the unit circle. Using all symmetries of the \wp-function in the equianharmonic case, it suffices to know $\wp(z)$ for $|z| \leqslant 1 / \sqrt{3}$ (see [10], 18.2.22 to 18.2 .23 and 18.13 .1 to 18.13 .8]). It depends, however, on the computer used, whether this latter reduction will be economical.

Having bounded the argument in this manner, one is able to reduce the polynomials \widetilde{P} and \widetilde{Q}, as defined in (8). If we put for abbreviation

$$
\begin{equation*}
K_{N, \nu}^{(\alpha)}=(6 \nu+5) \cdot \sum_{k=1}^{m_{\nu}^{-1}} \frac{B_{2 k}}{(2 k)!} \cdot \Delta_{k}^{(\nu+1)} \cdot \sigma_{N}^{(6 \nu+2 k+5)}-\sigma_{N}^{(6 \nu+5)}, \tag{27}
\end{equation*}
$$

we have

$$
\begin{equation*}
\wp(z)=\frac{1}{z^{2}}+6 z^{4} \cdot \frac{5+z^{6}}{\left(1-z^{6}\right)^{2}}+6 z^{4} \cdot \frac{\widetilde{P}(z)}{\widetilde{Q}(z)}+6 z^{4} \cdot \sum_{\nu=0}^{\alpha-1} K_{N, \nu}^{(\alpha)} \cdot z^{6 \nu} . \tag{28}
\end{equation*}
$$

Let

$$
\begin{equation*}
\hat{P}(z)=\widetilde{P}(z)+\widetilde{Q}(z) \cdot \sum_{\nu=0}^{\alpha-1} K_{N, \nu}^{(\alpha)} \cdot z^{6 \nu}=: \sum \alpha_{j} z^{6 j} \tag{29}
\end{equation*}
$$

$$
\widetilde{Q}(z)=: \sum \beta_{j} z^{6 j}
$$

With increasing j the coefficients α_{j} and β_{j} become quickly small in modulus. Therefore, we choose integers k_{N} and k_{D} and define the truncated polynomials

$$
\begin{equation*}
P(z)=\sum_{j=0}^{k_{N}} \alpha_{j} z^{6 j}, \quad Q(z)=\sum_{j=0}^{k_{D}} \beta_{j} z^{6 j} \tag{30}
\end{equation*}
$$

The truncation error

$$
\begin{equation*}
\delta(z)=\hat{P}(z) / \widetilde{Q}(z)-P(z) / Q(z) \tag{31}
\end{equation*}
$$

can easily be estimated. For the approximation

$$
\begin{equation*}
\wp(z) \approx \frac{1}{z^{2}}+6 z^{4} \cdot \frac{5+z^{6}}{\left(1-z^{6}\right)^{2}}+6 z^{4} \cdot \frac{P(z)}{Q(z)} \tag{32}
\end{equation*}
$$

we thus have an error of

$$
\begin{equation*}
\epsilon(z)=\rho_{N, m}^{(\alpha)}+6 z^{4} \cdot \delta(z) \tag{33}
\end{equation*}
$$

To find an approximation to $\wp(z)$ one first has to decide whether one wishes to confine to $|z| \leqslant 1$ or $|z| \leqslant 1 / \sqrt{3}$. After that, N is fixed so that the desired accuracy is achieved with a minimum of computer time. In most cases $\alpha=1$ is preferable. m is chosen in such a way that the error in (19) has nearly the same order of magnitude as $R_{N}^{(\alpha)}$. Finally, k_{N} and k_{D} are chosen such that $6 z^{4} \delta(z)$ has the same order of magnitude as $\rho_{N, m}^{(\alpha)}$.

Table I

The coefficients α_{j} and β_{j} of the representation (32)

$$
\text { for } N=20, \alpha=1, m=4, \text { and } j=0, \ldots, 9 .
$$

j	α_{j}				${ }^{\beta} \mathrm{j}$			
0	- 0.11414	02554	78832	25212	1.00000	00000	00000	00000
1	0.01246	21470	34158	86306	0.04565	55348	48201	06097
2	0.00007	33190	74452	31537	- 0.00056	44480	18476	46390
3	0.00000	12310	17921	46078	- 0.00002	61983	29204	21111
4	0.00000	00026	84924	69697	0.00000	02553	31457	29808
5	- 0.00000	00000	44046	10396	0.00000	00006	22521	91170
6	0.00000	00000	00135	87306	0.00000	00000	04512	35409
7	0.00000	00000	00000	21151	- 0.00000	00000	00000	97714
8	0.00000	00000	00000	00002	0.00000	00000	00000	00184
9		---			- 0.00000	00000	00000	00004

Table II

The coefficients $\alpha_{j}^{(1)}$ and $\beta_{j}^{(1)}$ of the representation (37)

$$
\text { for } N=20, \alpha=1, m=4, j=0, \ldots, 10 .
$$

| 0 | -0.45656 | 10219 | 15329 | 00848 | | 1.00000 | 00000 | 00000 | 00000 |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.13504 | 37391 | 64781 | 42656 | 0.09131 | 10696 | 96402 | 12194 | |
| 2 | 0.00293 | 35592 | 15775 | 43401 | 0.00095 | 55318 | 25322 | 37367 | |
| 3 | 0.00003 | 27611 | 02419 | 05813 | -0.00010 | 39370 | 10763 | 52269 | |
| 4 | 0.00000 | 40036 | 54572 | 23584 | -0.00000 | 15629 | 32983 | 73684 | |
| 5 | -0.00000 | 00446 | 07821 | 71793 | 0.00000 | 00541 | 34822 | 32985 | |
| 6 | -0.00000 | 00004 | 92565 | 29248 | 0.00000 | 00004 | 63977 | 63268 | |
| 7 | -0.00000 | 00000 | 02669 | 74929 | -0.00000 | 00000 | 13671 | 20407 | |
| 8 | 0.00000 | 00000 | 00007 | 09648 | 0.00000 | 00000 | 00027 | 39656 | |
| 9 | -0.00000 | 00000 | 00000 | 27512 | 0.00000 | 00000 | 00000 | 08265 | |
| 10 | 0.00000 | 00000 | 00000 | 00024 | 0.00000 | 00000 | 00000 | 00274 | |

All numbers occurring in the calculations can be computed very accurately. $\sigma_{N}^{(k)}$ is calculated according to (13) by using Table 23.3 in [1]. This gives a maximum accuracy of about 10^{-20}. For greater accuracy Table 33 of [3] is preferable.

As an example, an approximation of the \wp-function for $N=20, \alpha=1$ and $m=4$ was computed. The author is very thankful to Mrs. I. Oellers for excellently written programs. All computations were performed on the IBM 360/67 of the Central Institute for Applied Mathematics of the Nuclear Research Center, Jülich. The coefficients α_{j} and β_{j} according to (29) and (30) are listed in Table I. For $|z| \leqslant 1$ is $\left|\rho_{20,4}^{(1)}\right| \leqslant 3.050 \cdot 10^{-12}$. Choosing $k_{N}=k_{D}=5$, one has

$$
\begin{equation*}
|\epsilon(z)| \leqslant 7.678 \cdot 10^{-12} \tag{34}
\end{equation*}
$$

For $|z| \leqslant 1 / \sqrt{3}, k_{N}=3, k_{D}=4$ is

$$
\begin{equation*}
|\epsilon(z)| \leqslant 3.131 \cdot 10^{-14} \tag{35}
\end{equation*}
$$

This approximation compares very well with Southard's approximation [9] and [10, 18.13.67].

By differentiating all relevant formulas, one can derive very directly approximations and error estimates for derivatives of Weierstrass' \wp-function. We sketch this procedure for the first derivative. Putting (9) into (7) and differentiating, we have as an estimate for the error

$$
\left|\frac{d}{d z} R_{N}^{(\alpha)}\right|+\sum_{\nu=0}^{\alpha-1}(6 \nu+4)(36 \nu+30) \cdot c_{m_{\nu}} \gamma_{m_{\nu}}^{(\nu)} \cdot \sigma_{N}^{\left(6 \nu+2 m_{\nu}+5\right)} \cdot|z|^{6 \nu+3} ;
$$

in particular, for $\alpha=1$ the error is less than

$$
\begin{equation*}
120 c_{m} \gamma_{m}^{(1)} \sigma_{N}^{(2 m+5)}|z|^{3}+3.851 \cdot 10^{3} \sigma_{N}^{(11)}|z|^{9}+8.28 \cdot 10^{3} \sigma_{N}^{(17)}|z|^{15} \tag{36}
\end{equation*}
$$

With \hat{P} and \widetilde{Q} from (29) the corresponding approximation is

$$
\begin{align*}
\wp^{\prime}(z) \approx & -\frac{2}{z^{3}}+12 z^{3} \cdot \frac{10+25 z^{6}+z^{12}}{\left(1-z^{6}\right)^{3}} \\
& +6 z^{3} \cdot \frac{4 \cdot \hat{P} \cdot \widetilde{Q}+z \cdot \hat{P}^{\prime} \cdot \widetilde{Q}-z \cdot \hat{P} \cdot \widetilde{Q}^{\prime}}{\widetilde{Q}^{2}} \tag{37}\\
= & -\frac{2}{z^{3}}+12 z^{3} \cdot \frac{10+25 z^{6}+z^{12}}{\left(1-z^{6}\right)^{3}}+6 z^{3} \cdot \frac{P_{1}(z)}{Q_{1}(z)}
\end{align*}
$$

The coefficients of $P_{1}(z)=\Sigma \alpha_{j}^{(1)} \cdot z^{6 j}$ and $Q_{1}(z)=\Sigma \beta_{j}^{(1)} \cdot z^{6 j}$ can be computed easily using the coefficients α_{j} and β_{j}. For $N=20, \alpha=1$ and $m=4$ they are given in Table II. The corresponding error estimates are:

For $|z| \leqslant 1, k_{N}=k_{D}=6$ is

$$
|\epsilon(z)| \leqslant 1.067 \cdot 10^{-10}
$$

for $|z| \leqslant 1 / \sqrt{3}, k_{N}=k_{D}=4$ we have

$$
|\epsilon(z)| \leqslant 3.244 \cdot 10^{-13}
$$

Figure 1. The error in approximating $\wp(z)$ on the real axis for

$$
N=20, \alpha=1, m=4 .
$$

(1) Bound for $\epsilon(x)$ according to (25) and (33) for $k_{N}=k_{D}=5$,
(2) Error for $k_{N}=k_{D}=5$,
(3) Error for $k_{N}=3, k_{D}=4$; see (35),
(4) Error for $k_{N}=k_{D}=10$.

Nuclear Research Center
Central Institute for Applied Mathematics
D5 17 Jülich, Germany

1. M. ABRAMOWITZ \& I. A. STEGUN, Editors, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series, vol. 55, U.S. Government Printing Office, 1964; reprint, Dover, New York, 1966. MR 34 \#8606.
2. N. I. AHIEZER, Elements of the Theory of Elliptic Functions, GITTL, Moscow, 1948; 2nd rev. ed., 'Nauka'", Moscow, 1970. (Russian) MR 12, 409; 44 \#5517.
3. H. T. DAVIS, Tables of the Mathematical Functions, vol. II, Principia Press of Trinity University, San Antonio, Texas, 1963.
4. U. ECKHARDT, Zur Berechnung der Weierstrassschen Zeta- und Sigma-Funktion, Berichte der KFA Jülich, Jül-964-MA, June 1973.
5. O. EMERSLEBEN, "Erweiterung des Konvergenzbereichs einer Potenzreihe durch Herausnahme von Singularitäten, insbesondere zur Berechnung einer Zetafunktion zweiter Ordnung," Math. Nachr., v. 31, 1966, pp. 195-220. MR 33 \#4022.
6. E. GRAESER, Einführung in die Theorie der elliptischen Funktionen und deren Anwendungen, Verlag von R. Oldenbourg, München, 1950. MR 12, 607.
7. A. G. GREENHILL, The Application of Elliptic Functions, Dover, New York, 1959. MR 22 \#2724.
8. W. MAGNUS \& F. OBERHETTINGER, Anwendung der elliptischen Funktionen in Physik und Technik, Die Grundlehren der math. Wissenschaften, Band 55, Springer-Verlag, Berlin, 1949. MR 11, 104.
9. T. H. SOUTHARD, "Approximation and table of the Weierstrass \wp function in the equianharmonic case for real argument," $M T A C, v .11,1957$, pp. 99-100. MR 19, 182.
10. T. H. SOUTHARD, "Weierstrass elliptic and related functions," in [1, Chapter 18].
11. V. K. TKAČENKO, "On vortex lattices," Ž. '̇̇ksper. Teoret. Fiz., v. 49, 1965, pp. 18751883. (Russian).
12. F. TÖLKE, Praktische Funktionenlehre. Band II: Theta-Funktionen und spezielle Weierstrasssche Funktionen, Springer-Verlag, Berlin and New York, 1966. MR 35 \#3089.
13. F. TRICOMI, Elliptische Funktionen, Transl. and edited by M. Krafft, Mathematik und ihre Anwendungen in Physik and Technik, Reihe A, Band 20, Akademische Verlagsgesellschaft, Geest \& Portig K.-G., Leipzig, 1948. MR 10, 532.
